حل تقریبی تحلیلی معادلات دیفرانسیل از مرتبه مشتق کسری خطی و غیرخطی

thesis
abstract

محاسبات کسری اخیرا در بسیاری از مسائل کاربردی شیمی وفیزیک بازتاب بسیار خوبی داشته و روش های حلی که برای این نوع مسائل ارائه می شوند دارای اهمیت زیادی می باشند. در این پایان نامه ما گروهی از معادلات دیفرانسیل کری از نوع خطی و غیر خطی را بررسی خواهیم کرد و به کمک روش تجزیه آدومیان جواب تقریبی تحلیلی برای این نوع معادلات ارائه خواهیم داد. این جواب برای معادلات خطی دقیق و برای معادلات غیر خطی تقریبی از جواب واقعی مسئله را به ما می دهد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

دیفرانسیل و انتگرال از مرتبه کسری

در این مقاله، با استفاده از تابع گاما به معرفی انتگرال و مشتق کسری یک تابع می پردازیم و در ادامه به چند کاربرد از این موضوع در چند شاخه مختلف و از جمله هندسه فرکتالی اشاره می کنیم. هدف اصلی این مقاله معرفی مراجع مناسب برای مطالعه و آشنایی هر چه بیشتر با این موضوع می باشد.

full text

بررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری

عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتق...

full text

روش های تحلیلی و تقریبی برای حل معادلات دیفرانسیل کسری پاره ای غیرخطی

از لحاظ توسعه روش های حل معادلات دیفرانسیل پاره ای در قرن نوزدهم میلادی با روش جدا سازی متغیرها برای معادلات خطی بوسیله دالامبر،اویلر و سپس کارهای فوریه برای معادله حرارت ادامه یافت که به دنبال آن همگرایی سری های فوریه و انتگرال های فوریه مطرح شد و سپس تابع های هارمونیک حقیقی دو بعدی و توابع مختلط از یک متغیر مختلط در کار های ریمان در سال ‎1851‎ گسترش یافت و بالاخره گسترش بیشتر آن ها توسط نویما...

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023